Documentation

MDP.Paths.Bounded

def MDP.Path_eq {State : Type u_1} {Act : Type u_2} (M : MDP State Act) (n : ) (s : State) :

Paths starting in s with length n

Equations
Instances For
    def MDP.Path_le {State : Type u_1} {Act : Type u_2} (M : MDP State Act) (n : ) (s : State) :

    Paths starting in s with length at most n

    Equations
    Instances For

      Paths starting in s with length n

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Paths starting in s with length at most n

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          instance MDP.instDecidableMemPathSetPath_eqOfDecidableEq {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {n : } {s : State} {π : M.Path} [DecidableEq State] :
          Equations
          instance MDP.instDecidableMemPathSetPath_leOfDecidableEq {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {n : } {s : State} {π : M.Path} [DecidableEq State] :
          Equations
          @[simp]
          theorem MDP.Path_eq.length_pos {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,=n]) :
          0 < π
          @[simp]
          theorem MDP.Path_eq.first_eq {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,=n]) :
          (↑π)[0] = s
          @[simp]
          theorem MDP.Path_eq.length_eq {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,=n]) :
          π = n
          @[simp]
          theorem MDP.Path_eq.iff {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : M.Path) :
          π Path[M,s,=n] π = n π[0] = s
          instance MDP.Path_eq.instSubsingletonElemPathOfNatNat {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} :
          @[simp]
          theorem MDP.Path_eq.length_zero {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} :
          @[simp]
          theorem MDP.Path_eq.length_one_singleton {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} :
          @[simp]
          theorem MDP.Path_eq.length_zero_tsum {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} (f : Path[M,s,=0]ENNReal) :
          ∑' (π : Path[M,s,=0]), f π = 0
          @[simp]
          theorem MDP.Path_eq.length_zero_tsum_singleton {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} (f : Path[M,s,=1]ENNReal) :
          ∑' (π : Path[M,s,=1]), f π = f {s},
          theorem MDP.Path_le.succs_univ_Finite {State : Type u_1} {Act : Type u_2} {M : MDP State Act} [DecidableEq State] [M.FiniteBranching] (π : M.Path) :
          @[simp]
          theorem MDP.Path_le.length_pos {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,n]) :
          0 < π
          @[simp]
          theorem MDP.Path_le.length_le {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,n]) :
          π n
          @[simp]
          theorem MDP.Path_le.first_le {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : Path[M,s,n]) :
          (↑π)[0] = s
          @[simp]
          theorem MDP.Path_le.iff {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} (π : M.Path) :
          π Path[M,s,n] π n π[0] = s
          instance MDP.Path_le.instSubsingletonElemPathOfNatNat {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {s : State} :
          theorem MDP.Path_le.finite {State : Type u_1} {Act : Type u_2} {M : MDP State Act} {n : } {s : State} [DecidableEq State] [M.FiniteBranching] :
          @[reducible, inline]
          abbrev MDP.Path_eq_follows {State : Type u_1} {Act : Type u_2} (M : MDP State Act) (s₀ : State) (n : ) (s₁ : (M.succs_univ s₀)) :

          The set of paths of the kind s₀ s₁ ⋯ sₙ₊₁

          Equations
          Instances For

            The set of paths of the kind s₀ s₁ ⋯ sₙ₊₁

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem MDP.Path_eq_follows_disjoint {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {s₀ : State} {n : } :
              Set.univ.PairwiseDisjoint fun (x : (M.succs_univ s₀)) => Path[M,s₀x,=n]
              theorem MDP.Path_eq.succs_univ_disjoint {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {n : } {s : State} :
              theorem MDP.Path_eq.eq_biUnion_succs_univ {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {n : } {s : State} :
              Path[M,s,=n + 2] = ⋃ (π : Path[M,s,=n + 1]), (↑π).succs_univ
              theorem MDP.Path_eq.eq_succs_univ_biUnion {State : Type u_1} {Act : Type u_2} (M : MDP State Act) {n : } {s : State} :
              Path[M,s,=n + 2] = ⋃ (s' : (M.succs_univ s)), Path[M,ss',=n]