Documentation

PGCL.Exp

def pGCL.States (ϖ : Type u_2) :
Type u_2
Equations
Instances For
    @[reducible, inline]
    abbrev pGCL.Exp (ϖ : Type u_2) :
    Type u_2
    Equations
    Instances For
      @[reducible, inline]
      abbrev pGCL.BExpr (ϖ : Type u_2) :
      Type u_2
      Equations
      Instances For
        def pGCL.ProbExp (ϖ : Type u_2) :
        Type u_2
        Equations
        Instances For
          def pGCL.States.subst {ϖ : Type u_1} [DecidableEq ϖ] (σ : States ϖ) (x : ϖ) (v : ENNReal) :
          Equations
          Instances For
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def pGCL.Exp.subst {ϖ : Type u_1} [DecidableEq ϖ] (e : Exp ϖ) (x : ϖ) (A : Exp ϖ) :
              Exp ϖ
              Equations
              Instances For
                @[simp]
                theorem pGCL.Exp.subst_lift {ϖ : Type u_1} {x : ϖ} {A : Exp ϖ} {σ : States ϖ} [DecidableEq ϖ] (e : Exp ϖ) :
                e.subst x A σ = e (σ[x A σ])
                def pGCL.BExpr.not {ϖ : Type u_1} (b : BExpr ϖ) :
                Equations
                Instances For
                  def pGCL.BExpr.probOf {ϖ : Type u_1} (b : BExpr ϖ) :
                  Exp ϖ
                  Equations
                  Instances For
                    @[simp]
                    theorem pGCL.BExpr.true_probOf {ϖ : Type u_1} {b : BExpr ϖ} {σ : States ϖ} (h : b σ = true) :
                    b.probOf σ = 1
                    @[simp]
                    theorem pGCL.BExpr.false_probOf {ϖ : Type u_1} {b : BExpr ϖ} {σ : States ϖ} (h : b σ = false) :
                    b.probOf σ = 0
                    @[simp]
                    theorem pGCL.BExpr.true_not_probOf {ϖ : Type u_1} {b : BExpr ϖ} {σ : States ϖ} (h : b σ = true) :
                    b.not.probOf σ = 0
                    @[simp]
                    theorem pGCL.BExpr.false_not_probOf {ϖ : Type u_1} {b : BExpr ϖ} {σ : States ϖ} (h : b σ = false) :
                    b.not.probOf σ = 1
                    @[simp]
                    theorem pGCL.ProbExp.add_one {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    p σ + (1 - p σ) = 1
                    @[simp]
                    theorem pGCL.ProbExp.le_one {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    p σ 1
                    @[simp]
                    theorem pGCL.ProbExp.lt_one_iff {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    ¬p σ = 1 p σ < 1
                    @[simp]
                    theorem pGCL.ProbExp.sub_one_le_one {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    1 - p σ 1
                    @[simp]
                    theorem pGCL.ProbExp.ne_top {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    p σ
                    @[simp]
                    theorem pGCL.ProbExp.top_ne {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    p σ
                    @[simp]
                    theorem pGCL.ProbExp.not_zero_off {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    ¬p σ = 0 0 < p σ
                    @[simp]
                    theorem pGCL.ProbExp.lt_one_iff' {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    1 - p σ < 1 ¬p σ = 0
                    @[simp]
                    theorem pGCL.ProbExp.top_ne_one_sub {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    ¬ = 1 - p σ
                    @[simp]
                    theorem pGCL.ProbExp.one_le_iff {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    1 p σ p σ = 1
                    @[simp]
                    theorem pGCL.ProbExp.ite_eq_zero {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) {x : ENNReal} :
                    (if 0 < p σ then p σ * x else 0) = p σ * x
                    @[simp]
                    theorem pGCL.ProbExp.ite_eq_one {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) {x : ENNReal} :
                    (if p σ < 1 then (1 - p σ) * x else 0) = (1 - p σ) * x
                    @[simp]
                    theorem pGCL.ProbExp.ite_eq_zero' {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    (if 0 < p σ then p σ else 0) = p σ
                    @[simp]
                    theorem pGCL.ProbExp.ite_eq_one' {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) :
                    (if p σ < 1 then 1 - p σ else 0) = 1 - p σ
                    noncomputable def pGCL.ProbExp.pick {ϖ : Type u_1} (p : ProbExp ϖ) (x y : Exp ϖ) :
                    Exp ϖ
                    Equations
                    Instances For
                      @[simp]
                      theorem pGCL.ProbExp.pick_le {ϖ : Type u_1} (p : ProbExp ϖ) {x z y w : Exp ϖ} (h₁ : x z) (h₂ : y w) :
                      p.pick x y p.pick z w
                      @[simp]
                      theorem pGCL.ProbExp.pick_le' {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) {x z y w : Exp ϖ} (h₁ : x z) (h₂ : y w) :
                      p.pick x y σ p.pick z w σ
                      @[simp]
                      theorem pGCL.ProbExp.pick_same {ϖ : Type u_1} (p : ProbExp ϖ) {x : Exp ϖ} :
                      p.pick x x = x
                      @[simp]
                      theorem pGCL.ProbExp.pick_of {ϖ : Type u_1} (p : ProbExp ϖ) (σ : States ϖ) {x y : Exp ϖ} :
                      p σ * x σ + (1 - p σ) * y σ = p.pick x y σ