Documentation

ProbNetKAT.Cantor

Cantor #

This file defines the Cantor-space and its components.

Main definitions #

The subbasic sets B[h] and B{b} #

def ProbNetKAT.B_h {H : Type} (h : H) :
Set (Set H)

Equation (1.1)

$$B[h] = \{ c ∣ h ∈ c \}$$

Equations
Instances For
    def ProbNetKAT.B_b {H : Type} (b : Set H) :
    Set (Set H)

    Equation (1.1)

    $$B\{b\} = \{ c ∣ b ⊆ c \}$$

    Equations
    Instances For

      Equation (1.1)

      $$B[h] = \{ c ∣ h ∈ c \}$$

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Equation (1.1)

        $$B\{b\} = \{ c ∣ b ⊆ c \}$$

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem ProbNetKAT.B_b_h_eq_B_h {α✝ : Type} {h : α✝} :
          @[simp]
          theorem ProbNetKAT.B_b_subset_iff {α✝ : Type} {c b : Set α✝} :
          B{c} B{b} b c

          Lemma 1. (i)

          @[simp]
          theorem ProbNetKAT.B_b_union_eq_inter {α✝ : Type} {b c : Set α✝} :

          Lemma 1. (ii)

          @[simp]

          Lemma 1. (iii)

          The sets B[h] and B[h]ᶜ are the subbasic open sets of the Cantor space topology on 2H.

          Equations
          Instances For

            The Borel measurable space generated by the Cantor-topology.

            Equations
            Instances For

              The Set Algebra #

              def ProbNetKAT. {H : Type} :
              Set (Set (Set H))

              The family of Borel sets is the smallest σ-algebra containing the Cantor-open sets.

              The theorem ℬ_is_borel establishes this connection.

              Equations
              Instances For
                @[simp]
                theorem ProbNetKAT.ℬ_mem_compl {H : Type} {s : Set (Set H)} :
                @[simp]
                theorem ProbNetKAT.ℬ_mem_union {H : Type} {s t : Set (Set H)} :
                s t s t
                @[simp]
                theorem ProbNetKAT.ℬ_mem_inter {H : Type} {s t : Set (Set H)} :
                s t s t
                @[simp]
                theorem ProbNetKAT.B_b_IsOpen_of_mem {α✝ : Type} {b : α✝} :

                All set B[b] are open in the Cantor-space topology.

                @[simp]
                theorem ProbNetKAT.B_b_IsClosed_of_mem {α✝ : Type} {b : α✝} :

                All set B[b] are closed in the Cantor-space topology.

                @[simp]
                theorem ProbNetKAT..isClosed_of_isOpen {α✝ : Type} {S : Set (Set α✝)} (h : IsOpen S) :
                @[simp]
                theorem ProbNetKAT..isClosed_iff_isOpen {α✝ : Type} {S : Set (Set α✝)} :

                From Wikipedia:

                Using the union and intersection as operations, the clopen subsets of a given topological space X form a Boolean algebra. Every Boolean algebra can be obtained in this way from a suitable topological space: see Stone's representation theorem for Boolean algebras.

                theorem ProbNetKAT..IsOpen_of_mem {α✝ : Type} {b : Set (Set α✝)} (h : b ) :

                All set in are open in the Cantor-space topology.

                theorem ProbNetKAT.ℬ_is_borel {α✝ : Type} {S : Set (Set α✝)} :

                The family of Borel sets is the smallest σ-algebra containing the Cantor-open sets.

                The Set Algebra ℬ{b} #

                def ProbNetKAT.ℬ_b {H : Type} (b : Set H) :
                Set (Set (Set H))

                Let ℬ{b} be the Boolean subalgebra of generated by {B[h] | h ∈ b}.

                Equations
                Instances For

                  Let ℬ{b} be the Boolean subalgebra of generated by {B[h] | h ∈ b}.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[simp]
                    @[simp]
                    @[simp]
                    theorem ProbNetKAT.ℬ_b_mem_compl {H : Type} {s : Set (Set H)} {b : Set H} :
                    @[simp]
                    theorem ProbNetKAT.ℬ_b_mem_union {H : Type} {s t : Set (Set H)} {b : Set H} :
                    s ℬ{b} t ℬ{b}s t ℬ{b}
                    @[simp]
                    theorem ProbNetKAT.ℬ_b_mem_inter {H : Type} {s t : Set (Set H)} {b : Set H} :
                    s ℬ{b} t ℬ{b}s t ℬ{b}
                    @[simp]
                    theorem ProbNetKAT.B_h_mem_ℬ_b_univ {α✝ : Type} {i : α✝} :
                    @[simp]
                    theorem ProbNetKAT.B_h_mem_ℬ_b {α✝ : Type} {b : Set α✝} {i : α✝} (hi : i b) :
                    @[simp]
                    theorem ProbNetKAT.B_h_mem_ℬ {α✝ : Type} {i : α✝} :
                    theorem ProbNetKAT.ℬ_b_finite_of_finite {α✝ : Type} {b : Set α✝} (h : b.Finite) :

                    If b is finite, so is ℬ{b}.

                    def ProbNetKAT.℘ω {α : Type u_1} (X : Set α) :
                    Set (Set α)

                    For a set X, we let ℘ω(X) denote the finite subsets of X.

                    Equations
                    Instances For

                      Lemma 1. (iv)

                      The atoms A{a,b} #

                      def ProbNetKAT.A_ab {H : Type} (a b : Set H) :
                      Set (Set H)

                      The atoms of ℬ{b} are in one-to-one correspondence with the subsets a ⊆ b, the subset a determining which B[h] occur positively in the construction of the atom:

                      A{a,b} = ⋂ h ∈ a, B[h] ∩ ⋂ h ∈ b \ a, B[h]ᶜ = B{a} \ ⋃ a ⊂ c ∧ c ⊆ b, B{c} = {c | a = c ∩ b}
                      

                      Formulated in in A_ab_eq₁, A_ab_eq₂, and, A_ab_eq₃.

                      Equations
                      Instances For

                        The atoms of ℬ{b} are in one-to-one correspondence with the subsets a ⊆ b, the subset a determining which B[h] occur positively in the construction of the atom:

                        A{a,b} = ⋂ h ∈ a, B[h] ∩ ⋂ h ∈ b \ a, B[h]ᶜ = B{a} \ ⋃ a ⊂ c ∧ c ⊆ b, B{c} = {c | a = c ∩ b}
                        

                        Formulated in in A_ab_eq₁, A_ab_eq₂, and, A_ab_eq₃.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          def ProbNetKAT.A_ab_eq₁ {α✝ : Type} {a b : Set α✝} (hab : a b) :
                          A{a,b} = (⋂ ha, B[h]) hb \ a, B[h]

                          Definition (i) of A{a,b}.

                          Equations
                          • =
                          Instances For
                            theorem ProbNetKAT.A_ab_eq₂ {α✝ : Type} {a b : Set α✝} (hab : a b) :
                            A{a,b} = B{a} \ ⋃ (c : {c : Set α✝ | a c c b}), B{c}

                            Definition (ii) of A{a,b}.

                            theorem ProbNetKAT.A_ab_eq₃ {α✝ : Type} {a b : Set α✝} (_hab : a b) :
                            A{a,b} = {c : Set α✝ | a = c b}

                            Definition (iii) of A{a,b}.

                            @[simp]
                            theorem ProbNetKAT.A_ab_a_mem {α✝ : Type} {a b : Set α✝} (hab : a b) :
                            a A{a,b}
                            @[simp]
                            theorem ProbNetKAT.A_ab_same_eq_B_b {α✝ : Type} {b : Set α✝} :
                            theorem ProbNetKAT.A_ab_mem_ℬ_b {H : Type} {a b : Set H} (hb : b.Finite) (hab : a b) :
                            theorem ProbNetKAT.A_ab_mem_ℬ {H : Type} {a b : Set H} (hb : b.Finite) (hab : a b) :
                            theorem ProbNetKAT.B_b_eq_iUnion_A_ab {α✝ : Type} {a b : Set α✝} (hab : a b) :
                            B{a} = c{c : Set α✝ | a c c b}, A{c,b}

                            Lemma 2.

                            theorem ProbNetKAT.B_h_eq_iUnion_A_ab {α✝ : Type} {b : Set α✝} {a : α✝} (hab : a b) :
                            B[a] = c{c : Set α✝ | a c c b}, A{c,b}

                            Lemma 2. rephrased for B[h]

                            def ProbNetKAT.ℬ_b_exists_decomposition {H : Type} {b : Set H} {B : Set (Set H)} (hsb : B ℬ{b}) (hb : b.Finite) :
                            ∃ (q : Set (Set H)), B = aq, A{a,b} (q.PairwiseDisjoint fun (x : Set H) => A{x,b}) q.Finite aq, a b

                            For any B ∈ ℬ{b} there exists finite set of subsets of b, call it q, who's disjoint union satisfies B = ⋃ a ∈ q, A{a,b}.

                            Equations
                            • =
                            Instances For
                              theorem ProbNetKAT.A_ab_subset_iff {α✝ : Type} {a b a' b' : Set α✝} (hab : a b) (hab' : a' b') :
                              A{a,b} A{a',b'} a' a b' \ a' b \ a

                              Lemma 3. (i)

                              theorem ProbNetKAT.A_ab_rel {α✝ : Type} {a b a' b' : Set α✝} (hab : a b) (hab' : a' b') :
                              A{a,b} A{a',b'} A{a',b'} A{a,b} A{a,b} A{a',b'} =

                              Lemma 3. (ii)