Documentation

ProbNetKAT.MathlibExt

Mathlib extensions used by ProbNetKAT #

These are general definitions and theorems unrelated but necessary for the ProbNetKAT formalization.

Main definitions #

Finset.nepowerset #

def Finset.nepowerset {α : Type} [DecidableEq α] (s : Finset α) :
Equations
Instances For
    @[simp]
    @[simp]
    theorem Finset.mem_nepowerset_iff {α : Type} [DecidableEq α] (s : Finset α) {x : Finset α} :
    theorem Finset.nepowerset_insert {α : Type} [DecidableEq α] (s : Finset α) {a : α} :
    (insert a s).nepowerset = s.nepowerset image (fun (x : Finset α) => insert a x) s.powerset
    @[simp]
    theorem Finset.nepowerset_pair {α : Type} [DecidableEq α] {a b : α} :
    theorem Finset.sum_nepowerset_insert {α : Type} [DecidableEq α] (s : Finset α) {β : Type u_1} {a : α} [AddCommMonoid β] (ha : as) (f : Finset αβ) :
    t(insert a s).nepowerset, f t = ts.nepowerset, f t + ts.powerset, f (insert a t)

    Finset.strongerInduction #

    def Finset.strongerInduction {α : Type u_1} {p : Finset αProp} (H : ∀ (s : Finset α), (∀ (t : Finset α), t.card < s.cardp t)p s) (s : Finset α) :
    p s
    Equations
    • =
    Instances For
      def Finset.caseStrongerInduction {α : Type} [DecidableEq α] {p : Finset αProp} (h₀ : p ) (h₁ : ∀ (a : α) (s : Finset α), as(∀ (t : Finset α), t.card s.cardp t)p (insert a s)) (s : Finset α) :
      p s
      Equations
      • =
      Instances For

        Inclusion-exclusion #

        theorem Real.inclusion_exclusion' {H : Type} [DecidableEq (Set (Set H))] (μ : Set (Set H)) (I : Finset (Set (Set H))) (f : Set (Set H)Set (Set H)) (hf : ∀ (a b : Set (Set H)), f (a b) = f a f b) (h₀ : μ = 0) (h₁ : ∀ (a b : Set (Set H)), μ (a b) = μ a + μ b - μ (a b)) :
        μ (⋃ cI, f c) = cI.nepowerset, (-1) ^ (c.card + 1) * μ (f (⋂₀ c))
        theorem Real.inclusion_exclusion {H : Type} [DecidableEq (Set (Set H))] (μ : Set (Set H)) (I : Finset (Set (Set H))) (h₀ : μ = 0) (h₁ : ∀ (a b : Set (Set H)), μ (a b) = μ a + μ b - μ (a b)) :
        μ (⋃₀ I) = cI.nepowerset, (-1) ^ (c.card + 1) * μ (⋂₀ c)
        theorem MeasureTheory.inclusion_exclusion₂ {H : Type u_1} {b a : Set (Set H)} (μ : Measure (Set H)) [IsFiniteMeasure μ] (h : MeasurableSet b) :
        μ (a b) = μ a + μ b - μ (a b)
        theorem MeasureTheory.inclusion_exclusion₂_real {H : Type u_1} {b a : Set (Set H)} (μ : Measure (Set H)) [IsFiniteMeasure μ] (h : MeasurableSet b) :
        μ.real (a b) = μ.real a + μ.real b - μ.real (a b)
        theorem MeasureTheory.real_inclusion_exclusion' {H : Type} [DecidableEq (Set (Set H))] (μ : Measure (Set H)) [IsFiniteMeasure μ] (I : Finset (Set (Set H))) (hI : iI, MeasurableSet i) (f : Set (Set H)Set (Set H)) (hf : ∀ (a b : Set (Set H)), f (a b) = f a f b) (hfm : xI, MeasurableSet (f x)) :
        μ.real (⋃ cI, f c) = cI.nepowerset, (-1) ^ (c.card + 1) * μ.real (f (⋂₀ c))
        theorem MeasureTheory.real_inclusion_exclusion {H : Type} [DecidableEq (Set (Set H))] (μ : Measure (Set H)) [IsFiniteMeasure μ] (I : Finset (Set (Set H))) (hI : iI, MeasurableSet i) :
        μ.real (⋃₀ I) = cI.nepowerset, (-1) ^ (c.card + 1) * μ.real (⋂₀ c)
        theorem MeasureTheory.real_inclusion_exclusion_even_odd {H : Type} [DecidableEq (Set (Set H))] (μ : Measure (Set H)) [IsFiniteMeasure μ] (I : Finset (Set (Set H))) :
        cI.nepowerset, (-1) ^ (c.card + 1) * μ.real (⋂₀ c) = cI.nepowerset with Odd c.card, μ.real (⋂₀ c) - cI.nepowerset with Even c.card, μ.real (⋂₀ c)
        theorem MeasureTheory.ennreal_inclusion_exclusion {H : Type} [DecidableEq (Set (Set H))] (μ : Measure (Set H)) [IsFiniteMeasure μ] (I : Finset (Set (Set H))) (hI : iI, MeasurableSet i) :
        μ (⋃₀ I) = ENNReal.ofReal (∑ cI.nepowerset, (-1) ^ (c.card + 1) * μ.real (⋂₀ c))
        theorem MeasureTheory.probability_inclusion_exclusion {H : Type} [DecidableEq (Set (Set H))] (μ : ProbabilityMeasure (Set H)) (I : Finset (Set (Set H))) (hI : xI, MeasurableSet x) :
        μ (⋃₀ I) = (∑ cI.nepowerset, (-1) ^ (c.card + 1) * (μ (⋂₀ c))).toNNReal
        theorem MeasureTheory.ennreal_inclusion_exclusion_even_odd {H : Type} [DecidableEq (Set (Set H))] (μ : Measure (Set H)) [IsFiniteMeasure μ] (I : Finset (Set (Set H))) (hI : iI, MeasurableSet i) :
        μ (⋃₀ I) = cI.nepowerset with Odd c.card, μ (⋂₀ c) - cI.nepowerset with Even c.card, μ (⋂₀ c)
        theorem MeasureTheory.probability_inclusion_exclusion_even_odd {H : Type} [DecidableEq (Set (Set H))] (μ : ProbabilityMeasure (Set H)) (I : Finset (Set (Set H))) (hI : xI, MeasurableSet x) :
        μ (⋃₀ I) = cI.nepowerset with Odd c.card, μ (⋂₀ c) - cI.nepowerset with Even c.card, μ (⋂₀ c)