Mathlib extensions used by ProbNetKAT #
These are general definitions and theorems unrelated but necessary for the ProbNetKAT formalization.
Main definitions #
Finset.nepowerset
: A variant ofFinset.powerset
which excludes ∅.Finset.strongerInduction
: An induction principle onFinset
where the induction hypothesis can be applied to any finset with a smaller cardinality.Real.inclusion_exclusion
: Inclusion-exclusion principle for real valued functions.MeasureTheory.real_inclusion_exclusion
: Inclusion-exclusion principle for real valued measures.MeasureTheory.ennreal_inclusion_exclusion
: Inclusion-exclusion principle for measures by way of reals.MeasureTheory.ennreal_inclusion_exclusion_even_odd
: Inclusion-exclusion principle for measures expressed as the difference between the odd and the even terms.
Instances For
@[simp]
@[simp]
theorem
Finset.sum_nepowerset_insert
{α : Type}
[DecidableEq α]
(s : Finset α)
{β : Type u_1}
{a : α}
[AddCommMonoid β]
(ha : a ∉ s)
(f : Finset α → β)
:
Inclusion-exclusion #
theorem
MeasureTheory.inclusion_exclusion₂
{H : Type u_1}
{b a : Set (Set H)}
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(h : MeasurableSet b)
:
theorem
MeasureTheory.real_inclusion_exclusion'
{H : Type}
[DecidableEq (Set (Set H))]
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(I : Finset (Set (Set H)))
(hI : ∀ i ∈ I, MeasurableSet i)
(f : Set (Set H) → Set (Set H))
(hf : ∀ (a b : Set (Set H)), f (a ∩ b) = f a ∩ f b)
(hfm : ∀ x ∈ I, MeasurableSet (f x))
:
theorem
MeasureTheory.real_inclusion_exclusion
{H : Type}
[DecidableEq (Set (Set H))]
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(I : Finset (Set (Set H)))
(hI : ∀ i ∈ I, MeasurableSet i)
:
theorem
MeasureTheory.real_inclusion_exclusion_even_odd
{H : Type}
[DecidableEq (Set (Set H))]
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(I : Finset (Set (Set H)))
:
theorem
MeasureTheory.ennreal_inclusion_exclusion
{H : Type}
[DecidableEq (Set (Set H))]
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(I : Finset (Set (Set H)))
(hI : ∀ i ∈ I, MeasurableSet i)
:
theorem
MeasureTheory.probability_inclusion_exclusion
{H : Type}
[DecidableEq (Set (Set H))]
(μ : ProbabilityMeasure (Set H))
(I : Finset (Set (Set H)))
(hI : ∀ x ∈ I, MeasurableSet x)
:
theorem
MeasureTheory.ennreal_inclusion_exclusion_even_odd
{H : Type}
[DecidableEq (Set (Set H))]
(μ : Measure (Set H))
[IsFiniteMeasure μ]
(I : Finset (Set (Set H)))
(hI : ∀ i ∈ I, MeasurableSet i)
:
theorem
MeasureTheory.probability_inclusion_exclusion_even_odd
{H : Type}
[DecidableEq (Set (Set H))]
(μ : ProbabilityMeasure (Set H))
(I : Finset (Set (Set H)))
(hI : ∀ x ∈ I, MeasurableSet x)
: