class
OmegaCompletePartialOrderBi
(α : Type)
[instP : OmegaCompletePartialOrder α]
[instD : OmegaCompletePartialOrder αᵒᵈ]
:
Instances
@[reducible, inline]
Equations
Instances For
instance
instDFunLikeOrderDualHom
{α β : Type}
[Preorder α]
[Preorder β]
:
DFunLike (OrderDualHom α β) α fun (x : α) => β
Equations
- instDFunLikeOrderDualHom = { coe := OrderDualHom.toFun, coe_injective' := ⋯ }
instance
instPreorderOrderDualHom
{α β : Type}
[Preorder α]
[Preorder β]
:
Preorder (OrderDualHom α β)
Equations
- ⋯ = ⋯
Instances For
Equations
- instDFunLikeCochainNat = { coe := OrderDualHom.toFun, coe_injective' := ⋯ }
@[simp]
theorem
OmegaCompletePartialOrderBi.le_iff
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
[instBi : OmegaCompletePartialOrderBi α]
{a b : α}
:
def
Cochain.toChain
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
[instBi : OmegaCompletePartialOrderBi α]
(c : Cochain α)
:
Instances For
def
OmegaCompletePartialOrderBi.ωInf
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
[instBi : OmegaCompletePartialOrderBi α]
(c : Cochain α)
:
α
Instances For
theorem
OmegaCompletePartialOrderBi.le_ωInf
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
[instBi : OmegaCompletePartialOrderBi α]
(c : Cochain α)
(x : α)
(h : ∀ (i : ℕ), x ≤ c i)
:
theorem
OmegaCompletePartialOrderBi.ωInf_le
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
[instBi : OmegaCompletePartialOrderBi α]
(c : Cochain α)
(i : ℕ)
:
def
OmegaCompletePartialOrderBi.ωScottCocontinuous
{α : Type u_1}
{β : Type u_2}
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrder βᵒᵈ]
(f : α → β)
:
Equations
Instances For
def
OmegaCompletePartialOrderBi.ωScottBicontinuous
{α : Type}
[instA : OmegaCompletePartialOrder α]
[instB : OmegaCompletePartialOrder αᵒᵈ]
{β : Type}
[OmegaCompletePartialOrder β]
[OmegaCompletePartialOrder βᵒᵈ]
[OmegaCompletePartialOrderBi β]
(f : α → β)
: