@[simp]
theorem
MDP.EC_markovian_scheduler_specialize
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
{s₀ : State}
{s : ↑(M.succs_univ s₀)}
{n : ℕ}
{𝒮 : 𝔖[M]}
[𝒮.Markovian]
:
theorem
MDP.iInf_EC_specialized_eq_bounded
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
{n : ℕ}
(s : State)
(s' : ↑(M.succs_univ s))
:
theorem
MDP.iInf_scheduler_eq_iInf_act_iInf_scheduler
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{s : State}
{c : M.Costs}
{n : ℕ}
:
theorem
MDP.tsum_iInf_bounded_comm
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
[M.FiniteBranching]
{s : State}
{n : ℕ}
(f : (s' : ↑(M.succs_univ s)) → 𝔖[M,↑s',≤n] → ENNReal)
:
theorem
MDP.tsum_iInf_EC_comm
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
[M.FiniteBranching]
{s : State}
{α : Act}
{c : M.Costs}
{n : ℕ}
:
∑' (s' : ↑(M.succs_univ s)), ⨅ (𝒮 : 𝔖[M]), M.P s α ↑s' * EC c (𝒮.specialize s s') n ↑s' = ⨅ (𝒮 : 𝔖[M]), ∑' (s' : ↑(M.succs_univ s)), M.P s α ↑s' * EC c (𝒮.specialize s s') n ↑s'
theorem
MDP.iInf_EC_eq_specialized
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
{n : ℕ}
(s : State)
(s' : ↑(M.succs_univ s))
:
theorem
MDP.iSup_iInf_EC_eq_lfp_Φ
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
[M.FiniteBranching]
:
theorem
MDP.iSup_ECℒ_eq_lfp_Φℒ
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
(ℒ : 𝔏[M])
[M.FiniteBranching]
:
theorem
MDP.iInf_iSup_EC_eq_lfp_Φ
{State : Type u_1}
{Act : Type u_2}
{M : MDP State Act}
[DecidableEq State]
{c : M.Costs}
[M.FiniteBranching]
: