Operation MDP derived from SmallStep
. #
Main definitions #
pGCL.๐ฌ
: The derivedMDP
from the small step semantics.pGCL.๐ฌ.ฯ
: The characteristic function of doing one step in thepGCL.๐ฌ
.pGCL.op
: The demonic expected cost given by the least fixed point of the Bellman-operatorMDP.ฮฆ
.pGCL.op_eq_wp
: The proof connecting the fixed point characteristic of the operational semantics to the weakest preexpectation formalization ofpGCL
.
Equations
- pGCL.๐ฌ = MDP.ofRelation pGCL.SmallStep โฏ โฏ โฏ
Instances For
@[irreducible]
Equations
- pGCL.๐ฌ.cost X (some (none, ฯ)) = X ฯ
- pGCL.๐ฌ.cost X (ยทโจpGCL.tick r,ฯโฉ) = r ฯ
- pGCL.๐ฌ.cost X (ยทโจc' ;; a,ฯโฉ) = pGCL.๐ฌ.cost X (ยทโจc',ฯโฉ)
- pGCL.๐ฌ.cost X xโ = 0
Instances For
@[simp]
noncomputable instance
pGCL.๐ฌ.instDecidableMemConfSetSuccs_univAct
{ฯ : Type u_1}
[DecidableEq ฯ]
{s s' : Conf ฯ}
:
Decidable (s' โ ๐ฌ.succs_univ s)
theorem
pGCL.๐ฌ.tsum_succs_univ'
{ฯ : Type u_1}
[DecidableEq ฯ]
{c : Conf ฯ}
(f : โ(๐ฌ.succs_univ c) โ ENNReal)
:
@[simp]
@[simp]
Equations
- C.op X xโ = MDP.lfp_ฮฆ (pGCL.๐ฌ.cost X) (ยทโจC,xโโฉ)
Instances For
@[simp]