instance
ProbNetKAT.instCompletePartialOrderProd_probNetKAT
{α β : Type}
[CompletePartialOrder α]
[CompletePartialOrder β]
:
CompletePartialOrder (α × β)
Lemma 5. (i) The cartesian product of any collection of DCPOs is a DCPO under the componentwise order.
Equations
- ProbNetKAT.instCompletePartialOrderProd_probNetKAT = { toPartialOrder := Prod.instPartialOrder α β, toSupSet := Prod.supSet α β, lubOfDirected := ⋯ }
instance
ProbNetKAT.instCompletePartialOrderPi
{E D : Type}
[CompletePartialOrder E]
:
CompletePartialOrder (D → E)
Lemma 5. (iii) If E is a DCPO and D is any set, then the family of functions f : D → E
is
a DCPO under the pointwise order f ⊑ g
iff for all a ∈ D, f(a) ⊑ g(a)
. The supremum of a
directed set D
of functions D → E
is the function (⨆𝒟)(a) = ⨆ f ∈ 𝒟, f(a)
.
Equations
- ProbNetKAT.instCompletePartialOrderPi = { toPartialOrder := Pi.partialOrder, toSupSet := Pi.supSet, lubOfDirected := ⋯ }
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
ProbNetKAT.ℬ_sSup
{H : Type}
(D : Set (MeasureTheory.ProbabilityMeasure (Set H)))
:
Equations
- ProbNetKAT.ℬ_sSup D = ⟨ProbNetKAT.measure_of_fin (fun (B : ↑ProbNetKAT.B_b_fin) => ⨆ μ ∈ D, ↑(μ ↑B)) ⋯, ⋯⟩
Instances For
noncomputable instance
ProbNetKAT.instCompletePartialOrderProbabilityMeasureSet_probNetKAT
{H : Type}
:
Equations
- One or more equations did not get rendered due to their size.
Equations
- ProbNetKAT.instLE = { le := fun (a b : ProbabilityTheory.Kernel (Set H) (Set H)) => ∀ (i : Set H), ∀ B ∈ ProbNetKAT.𝒪, (a i) B ≤ (b i) B }
noncomputable instance
ProbNetKAT.instPartialOrderKernelSet_probNetKAT
{H : Type}
:
PartialOrder (ProbabilityTheory.Kernel (Set H) (Set H))
Equations
- ProbNetKAT.instPartialOrderKernelSet_probNetKAT = { toLE := ProbNetKAT.instLE, toLT := Preorder.toLT, le_refl := ⋯, le_trans := ⋯, lt_iff_le_not_le := ⋯, le_antisymm := ⋯ }