Measure extension #
Formulation of Theorem 1 stating that:
A function
μ : { B{b} | b.Finite } → [0,1]
extends to a measureμ : ℬ → [0,1]
under certain conditions.
The general outline of the proof of this theorem is as follows:
- First determining a finite
b
s.t. anyB ∈ ℬ
becomes aB ∈ ℬ{b}
.- The
b
is given byProbNetKAT.ℬ_b_mem_iff_exists
. - The extension here is done by Carathéodory's extension theorem, given by
MeasureTheory.AddContent.measure
.
- The
- The measure
μ B
of any suchB
can be written as the finite disjoint union of atoms (seeProbNetKAT.ℬ_b_exists_decomposition
), giving us∑ a, μ A{a,b}
. - The measure
μ A{a,b}
can be further decomposed using inclusion-exclusion (seeMeasureTheory.ennreal_inclusion_exclusion
). This then becomes a sum overB{b}
byProbNetKAT.B_b_union_eq_inter
.
Connecting the steps defines a new measure on ℬ
defined only on B{b}
for finite b
.
noncomputable instance
ProbNetKAT.instFintypeElemSetSetOfAndSubset_probNetKAT
{H : Type}
{a b : Set H}
(hb : b.Finite)
:
@[simp]
noncomputable def
ProbNetKAT.extend_B_b_fin
{H : Type}
(μ : ↑B_b_fin → ENNReal)
(b : Set H)
(hb : b.Finite)
:
Extension to μ(B)
where B ∈ ℬ{b}
for finite b
.
Equations
- ProbNetKAT.extend_B_b_fin μ b hb ⟨B, hB⟩ = ∑' (a : ↑(ProbNetKAT.ℬ_b_decompsoe_pick b hb B hB)), ProbNetKAT.extend_B_b_fin_A_ab μ (↑a) b ⋯
Instances For
Extension to μ(B)
where B ∈ ℬ{Set.univ}
.
Equations
- ProbNetKAT.extend_B_b_fin' μ ⟨B, hB⟩ = ProbNetKAT.extend_B_b_fin μ (ProbNetKAT.ℬ_b_pick B hB) ⋯ ⟨B, ⋯⟩
Instances For
noncomputable def
ProbNetKAT.AddContent_ofFin
{H : Type}
(μ : ↑B_b_fin → ENNReal)
(h : measure_of_fin_req μ)
:
Equations
Instances For
theorem
ProbNetKAT.AddContent_ofFin_IsSigmaSubadditive
{α✝ : Type}
{μ : ↑B_b_fin → ENNReal}
{h : measure_of_fin_req μ}
:
noncomputable def
ProbNetKAT.measure_of_fin
{H : Type}
(μ : ↑B_b_fin → ENNReal)
(h : measure_of_fin_req μ)
:
Theorem 1. A function μ : {B{b} | b finite} → [0, 1]
extends to a measure μ : ℬ → [0, 1]
iff for all finite b
and all a ⊆ b
$$ ∑_{a ⊆ c ⊆ b} (-1)^{|c \ a|} μ(B\{c\}) ≥ 0 $$
Moreover, the extension to ℬ
is unique.
Equations
- ProbNetKAT.measure_of_fin μ h = (ProbNetKAT.AddContent_ofFin μ h).measure ⋯ ⋯ ⋯