Documentation

ProbNetKAT.MeasureExtension

Measure extension #

Formulation of Theorem 1 stating that:

A function μ : { B{b} | b.Finite } → [0,1] extends to a measure μ : ℬ → [0,1] under certain conditions.

The general outline of the proof of this theorem is as follows:

Connecting the steps defines a new measure on defined only on B{b} for finite b.

theorem ProbNetKAT.asdadss {H : Type} {b : Set H} {B : Set (Set H)} (μ : MeasureTheory.Measure (Set H)) (hb : b.Finite) (hB : B ℬ{b}) :
∃ (q : Set (Set H)), μ B = ∑' (a : q), μ A{a,b}
theorem ProbNetKAT.asdadss' {H : Type} {B : Set (Set H)} (μ : MeasureTheory.Measure (Set H)) (hB : B ℬ{Set.univ}) :
∃ (b : Set H) (q : Set (Set H)), μ B = ∑' (a : q), μ A{a,b}
def ProbNetKAT.B_b_fin {H : Type} :
Set (Set (Set H))

The set of all B{b} generated by b finite.

Equations
Instances For
    noncomputable instance ProbNetKAT.instFintypeElemSetSetOfAndSubset_probNetKAT {H : Type} {a b : Set H} (hb : b.Finite) :
    Fintype {c : Set H | a c c b}
    Equations
    noncomputable def ProbNetKAT.mid_set {H : Type} {a b : Finset H} (hab : a b) :
    Equations
    Instances For
      @[simp]
      theorem ProbNetKAT.mid_set_mem_iff {H : Type} {c a b : Finset H} {hab : a b} :
      c mid_set hab a c c b
      @[simp]
      theorem ProbNetKAT.mid_set_insert {H : Type} {w : H} {a b : Finset H} (hab : a insert w b) :
      (mid_set hab) = {c : Finset H | a c c b} (fun (x : Finset H) => insert w x) '' {c : Finset H | a c c b}
      theorem ProbNetKAT.A_ab_inclusion_exclusion {H : Type} {a b : Finset H} (μ : Set (Set H)ENNReal) (hab : a b) :
      μ A{a,b} = (∑ cmid_set hab, if (c \ a).card % 2 = 0 then μ B{c} else 0) - cmid_set hab, if (c \ a).card % 2 = 1 then μ B{c} else 0
      Equations
      Instances For
        def ProbNetKAT.ℬ_b_pick {H : Type} (B : Set (Set H)) (h : B ℬ{Set.univ}) :
        Set H
        Equations
        Instances For
          Equations
          • =
          Instances For
            theorem ProbNetKAT.ℬ_b_decompsoe {H : Type} {b : Set H} {B : Set (Set H)} (hb : b.Finite) (hB : B ℬ{b}) :
            ∃ (A : Set (Set H)), (∀ aA, a b) B = aA, A{a,b}
            def ProbNetKAT.ℬ_b_decompsoe_pick {H : Type} (b : Set H) (hb : b.Finite) (B : Set (Set H)) (hB : B ℬ{b}) :
            Set (Set H)
            Equations
            Instances For
              def ProbNetKAT.ℬ_b_decompsoe_pick_spec {H : Type} (b : Set H) (hb : b.Finite) (B : Set (Set H)) (hB : B ℬ{b}) :
              (∀ aℬ_b_decompsoe_pick b hb B hB, a b) B = aℬ_b_decompsoe_pick b hb B hB, A{a,b}
              Equations
              • =
              Instances For
                @[simp]
                noncomputable def ProbNetKAT.extend_B_b_fin_A_ab {H : Type} (μ : B_b_finENNReal) (a b : Set H) (ha : a b) :

                Extension to μ(A{a,b}) for a ⊆ b and finite b.

                Equations
                Instances For
                  noncomputable def ProbNetKAT.extend_B_b_fin {H : Type} (μ : B_b_finENNReal) (b : Set H) (hb : b.Finite) :
                  ℬ{b}ENNReal

                  Extension to μ(B) where B ∈ ℬ{b} for finite b.

                  Equations
                  Instances For
                    @[simp]
                    theorem ProbNetKAT.extend_B_b_fin_apply {H : Type} (μ : B_b_finENNReal) (b : Set H) (hb : b.Finite) (B : ℬ{b}) :
                    extend_B_b_fin μ b hb B = ∑' (a : (ℬ_b_decompsoe_pick b hb B )), extend_B_b_fin_A_ab μ (↑a) b
                    noncomputable def ProbNetKAT.extend_B_b_fin' {H : Type} (μ : B_b_finENNReal) :

                    Extension to μ(B) where B ∈ ℬ{Set.univ}.

                    Equations
                    Instances For
                      @[simp]
                      theorem ProbNetKAT.extend_B_b_fin_empty {H : Type} (μ : B_b_finENNReal) (b : Set H) (hb : b.Finite) :
                      extend_B_b_fin μ b hb , = 0
                      @[simp]
                      theorem ProbNetKAT.extend_B_b_fin'_apply' {H : Type} (μ : B_b_finENNReal) (B : ℬ{Set.univ}) :
                      extend_B_b_fin' μ B = extend_B_b_fin μ (ℬ_b_pick B ) B,
                      Equations
                      Instances For
                        noncomputable def ProbNetKAT.measure_of_fin {H : Type} (μ : B_b_finENNReal) (h : measure_of_fin_req μ) :

                        Theorem 1. A function μ : {B{b} | b finite} → [0, 1] extends to a measure μ : ℬ → [0, 1] iff for all finite b and all a ⊆ b

                        $$ ∑_{a ⊆ c ⊆ b} (-1)^{|c \ a|} μ(B\{c\}) ≥ 0 $$

                        Moreover, the extension to is unique.

                        Equations
                        Instances For