Documentation

WGCL.FixedPoints

@[reducible, inline]
abbrev OmegaCompletePartialOrder.iterate_bot {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) :
Equations
Instances For
    def OmegaCompletePartialOrder.lfp {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] :
    (α →o α) →o α
    Equations
    Instances For
      theorem OmegaCompletePartialOrder.lfp_le {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) {a : α} (h : f a a) :
      lfp f a
      theorem OmegaCompletePartialOrder.lfp_le_fixed {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) {a : α} (h : f a = a) :
      lfp f a
      theorem OmegaCompletePartialOrder.lfp_le_map {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) :
      lfp f f (lfp f)
      theorem OmegaCompletePartialOrder.le_lfp {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) {a : α} (hf : ωScottContinuous f) (h : ∀ (b : α), f b ba b) :
      a lfp f
      theorem OmegaCompletePartialOrder.map_le_lfp {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) {a : α} (hf : ωScottContinuous f) (h : a lfp f) :
      f a lfp f
      theorem OmegaCompletePartialOrder.map_lfp {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) (hf : ωScottContinuous f) :
      f (lfp f) = lfp f
      theorem OmegaCompletePartialOrder.isFixedPt_lfp {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) (hf : ωScottContinuous f) :
      theorem OmegaCompletePartialOrder.isLeast_lfp_le {α : Type u_1} [instOrder : OmegaCompletePartialOrder α] [OrderBot α] (f : α →o α) (hf : ωScottContinuous f) :
      IsLeast {a : α | f a a} (lfp f)
      @[reducible, inline]
      Equations
      Instances For