def
OmegaCompletePartialOrder.lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
:
Equations
- OmegaCompletePartialOrder.lfp = { toFun := fun (f : α →o α) => OmegaCompletePartialOrder.ωSup (OmegaCompletePartialOrder.iterate_bot f), monotone' := ⋯ }
Instances For
theorem
OmegaCompletePartialOrder.lfp_le
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
{a : α}
(h : f a ≤ a)
:
theorem
OmegaCompletePartialOrder.lfp_le_fixed
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
{a : α}
(h : f a = a)
:
theorem
OmegaCompletePartialOrder.lfp_le_map
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
:
theorem
OmegaCompletePartialOrder.le_lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
{a : α}
(hf : ωScottContinuous ⇑f)
(h : ∀ (b : α), f b ≤ b → a ≤ b)
:
theorem
OmegaCompletePartialOrder.map_le_lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
{a : α}
(hf : ωScottContinuous ⇑f)
(h : a ≤ lfp f)
:
theorem
OmegaCompletePartialOrder.map_lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
(hf : ωScottContinuous ⇑f)
:
theorem
OmegaCompletePartialOrder.isFixedPt_lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
(hf : ωScottContinuous ⇑f)
:
Function.IsFixedPt (⇑f) (lfp f)
theorem
OmegaCompletePartialOrder.isLeast_lfp_le
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
(hf : ωScottContinuous ⇑f)
:
theorem
OmegaCompletePartialOrder.isLeast_lfp
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
(f : α →o α)
(hf : ωScottContinuous ⇑f)
:
IsLeast (Function.fixedPoints ⇑f) (lfp f)
theorem
OmegaCompletePartialOrder.lfp.ωScottContinuous
{α : Type u_1}
[instOrder : OmegaCompletePartialOrder α]
[OrderBot α]
:
@[reducible, inline]
abbrev
OmegaCompletePartialOrder.iterate_top
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
:
Equations
Instances For
theorem
OmegaCompletePartialOrder.iterate_top.mono
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
:
def
OmegaCompletePartialOrder.gfp
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
:
Equations
- OmegaCompletePartialOrder.gfp = { toFun := fun (f : α →o α) => OmegaCompletePartialOrderBi.ωInf (OmegaCompletePartialOrder.iterate_top f), monotone' := ⋯ }
Instances For
theorem
OmegaCompletePartialOrder.le_gfp
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
{a : α}
(h : a ≤ f a)
:
@[simp]
theorem
OmegaCompletePartialOrder.iterate_top_apply
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
{i : ℕ}
:
theorem
OmegaCompletePartialOrder.gfp_le
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
{a : α}
(h : ∀ b ≤ f b, b ≤ a)
:
theorem
OmegaCompletePartialOrder.isFixedPt_gfp
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
:
Function.IsFixedPt (⇑f) (gfp f)
theorem
OmegaCompletePartialOrder.map_gfp
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
:
theorem
OmegaCompletePartialOrder.gfp_le_map
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
{a : α}
(ha : gfp f ≤ a)
:
theorem
OmegaCompletePartialOrder.isGreatest_gfp_le
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
:
theorem
OmegaCompletePartialOrder.isGreatest_gfp
{α : Type}
[OmegaCompletePartialOrder α]
[OrderTop α]
(f : α →o α)
[OmegaCompletePartialOrder αᵒᵈ]
[OmegaCompletePartialOrderBi α]
:
IsGreatest (Function.fixedPoints ⇑f) (gfp f)